Human FABP2 / I-FABP Gene ORF cDNA clone expression plasmid,N terminal GFP tag

Catalog Number:HGC637-NG

Gene
Species
Human
NCBI Ref Seq
RefSeq ORF Size
399bp
Gene Synonym
FABPI, I-FABP, MGC133132, FABP2
Sequence Description
Identical with the Gene Bank Ref. ID sequence.
Description
Full length Clone DNA of Human fatty acid binding protein 2, intestinal (FABP2) Gene ORF cDNA clone expression plasmid,N terminal GFP tag
Plasmid
Promoter
Enhanced CMV mammalian cell promoter
Vector
pCMV3-N-GFPSpark
Restriction Site
Protein Tag
GFPSpark
Tag Sequence
GTGAGCAAGGGC……GAGCTGTACAAG
Sequencing Primers
Forward:T7(TAATACGACTCACTATAGGG) Reverse:BGH(TAGAAGGCACAGTCGAGG)
Quality Control
The plasmid is confirmed by full-length sequencing.
GFPSpark Tag Information
GFPSpark is an improved variant of the green fluorescent protein GFP. It possesses bright green fluorescence (excitation/ emission max = 487 / 508 nm) that is visible earlier than fluorescence of other green fluorescent proteins. GFPSpark is mainly intended for applications where fast appearance of bright fluorescence is crucial. It is specially recommended for cell and organelle labeling and tracking the promoter activity.
Screening
Antibiotic in E.coli
Kanamycin
Antibiotic in Mammalian cell
Hygromycin
Application
Stable or Transient mammalian expression
Storage & Shipping
Shipping
Each tube contains lyophilized plasmid.
Storage
The lyophilized plasmid can be stored at ambient temperature for three months.
Background Information
Fatty acid binding protein (FABP) is one of the intracellular proteins, with a low molecular weight of approximately 15 kDa, that plays important roles in the transportation and metabolism of long-chain fatty acids. FABP family proteins could be used as tissue specific injury marker based on the following characteristics of FABP. The intestinal fatty acid binding protein (I-FABP), or fatty acid-binding protein 2 (FABP2), an intracellular protein expressed only in the intestine, involved in the absorption and intracellular transport of dietary long chain fatty acids. The FABP2 gene is proposed as a candidate gene for diabetes because the protein it codes is involved in fatty acid (FA) absorption and metabolism. Numerous studies have assessed FABP2 gene variants. A transition of G to A at codon 54 of FABP2 results in an amino acid substitution (Ala54 to Thr54), which is common in diverse populations and results in increased FA absorption in vivo. Some evidence indicates that this variant may be associated with type 2 diabetes. This polymorphism was associated with some cardiovascular risk factors. The cytosolic human intestinal fatty acid binding protein (hFABP2) is proposed to be involved in intestinal absorption of long-chain fatty acids. FABP2 may also help maintain energy homeostasis by functioning as a lipid sensor.
References
  • de Luis DA, et al. (2007) Influence of ALA54THR polymorphism of fatty acid-binding protein 2 on obesity and cardiovascular risk factors. Horm Metab Res. 39(11): 830-4.
  • Klapper M, et al.. (2007) The human intestinal fatty acid binding protein (hFABP2) gene is regulated by HNF-4alpha. Biochem Biophys Res Commun. 356(1): 147-52.
  • TOP