Mouse Epidermal Growth Factor/EGF Gene ORF cDNA clone expression plasmid,N terminal Flag tag

Catalog Number:MGC555-NF

Gene
Species
Mouse
NCBI Ref Seq
RefSeq ORF Size
3654bp
Gene Synonym
AI790464
Sequence Description
Identical with the Gene Bank Ref. ID sequence.
Description
Full length Clone DNA of Mouse epidermal growth factor Gene ORF cDNA clone expression plasmid,N terminal Flag tag
Plasmid
Promoter
Enhanced CMV mammalian cell promoter
Vector
pCMV3-N-FLAG
Restriction Site
Protein Tag
Flag
Tag Sequence
GATTACAAGGATGACGACGATAAG
Sequencing Primers
Forward:T7(TAATACGACTCACTATAGGG) Reverse:BGH(TAGAAGGCACAGTCGAGG)
Quality Control
The plasmid is confirmed by full-length sequencing.
Flag Tag Information

FLAG-tag, or FLAG octapeptide, is a polypeptide protein tag that can be added to a protein using recombinant DNA technology. It can be used for affinity chromatography, then used to separate recombinant, overexpressed protein from wild-type protein expressed by the host organism. It can also be used in the isolation of protein complexes with multiple subunits.

A FLAG-tag can be used in many different assays that require recognition by an antibody. If there is no antibody against the studied protein, adding a FLAG-tag to this protein allows one to follow the protein with an antibody against the FLAG sequence. Examples are cellular localization studies by immunofluorescence or detection by SDS PAGE protein electrophoresis.

The peptide sequence of the FLAG-tag from the N-terminus to the C-terminus is: DYKDDDDK (1012 Da). It can be used in conjunction with other affinity tags, for example a polyhistidine tag (His-tag), HA-tag or myc-tag. It can be fused to the C-terminus or the N-terminus of a protein. Some commercially available antibodies (e.g., M1/4E11) recognize the epitope only when it is present at the N-terminus. However, other available antibodies (e.g., M2) are position-insensitive.

Screening
Antibiotic in E.coli
Kanamycin
Antibiotic in Mammalian cell
Hygromycin
Application
Stable or Transient mammalian expression
Storage & Shipping
Shipping
Each tube contains lyophilized plasmid.
Storage
The lyophilized plasmid can be stored at ambient temperature for three months.
Background Information
EGF is the founding member of the EGF-family of proteins. Members of this protein family have highly similar structural and functional characteristics. EGF contains 9 EGF-like domains and 9 LDL-receptor class B repeats. Human EGF is a 6045-Da protein with 53 amino acid residues and three intramolecular disulfide bonds. As a low-molecular-weight polypeptide, EGF was first purified from the mouse submandibular gland, but since then it was found in many human tissues including submandibular gland, parotid gland. It can also be found in human platelets, macrophages, urine, saliva, milk, and plasma. EGF is a growth factor that stimulates the growth of various epidermal and epithelial tissues in vivo and in vitro and of some fibroblasts in cell culture. It results in cellular proliferation, differentiation, and survival. Salivary EGF, which seems also regulated by dietary inorganic iodine, also plays an important physiological role in the maintenance of oro-esophageal and gastric tissue integrity. EGF acts by binding with high affinity to epidermal growth factor receptor on the cell surface and stimulating the intrinsic protein-tyrosine kinase activity of the receptor. The tyrosine kinase activity, in turn, initiates a signal transduction cascade that results in a variety of biochemical changes within the cell - a rise in intracellular calcium levels, increased glycolysis and protein synthesis, and increases in the expression of certain genes including the gene for EGFR - that ultimately lead to DNA synthesis and cell proliferation.
References
  • Chen JX, et al. (2011) Involvement of c-Src/STAT3 signal in EGF-induced proliferation of rat spermatogonial stem cells. Mol Cell Biochem. 358(1-2):67-73.
  • Guo Y, et al. (2012) Correlations among ERCC1, XPB, UBE2I, EGF, TAL2 and ILF3 revealed by gene signatures of histological subtypes of patients with epithelial ovarian cancer. Oncol Rep. 27(1):286-92.
  • Kim S, et al. (2012) Smad7 acts as a negative regulator of the epidermal growth factor (EGF) signaling pathway in breast cancer cells. Cancer Lett. 314(2):147-54.
  • Chatterton RT Jr, et al. (2010) Breast ductal lavage for assessment of breast cancer biomarkers. Horm Cancer. 1(4):197-204.
  • TOP