Human IDO2 Gene ORF cDNA clone expression plasmid,C terminal OFP tag

Catalog Number:HGD797-CO

Gene
Species
Human
NCBI Ref Seq
RefSeq ORF Size
1308 bp
Gene Synonym
INDOL1, IDO2
Sequence Description
Identical with the Gene Bank Ref. ID sequence.
Description
Full length Clone DNA of Human indoleamine 2,3-dioxygenase 2 Gene ORF cDNA clone expression plasmid,C terminal OFP tag
Plasmid
Promoter
Enhanced CMV mammalian cell promoter
Vector
pCMV3-C-OFPSpark
Restriction Site
KpnI + XbaI(6kb+1.31kb)
Protein Tag
OFPSpark
Tag Sequence
GATAGCACTGAG……CACCTGTTCCAG
Sequencing Primers
Forward:T7(TAATACGACTCACTATAGGG) Reverse:BGH(TAGAAGGCACAGTCGAGG)
Quality Control
The plasmid is confirmed by full-length sequencing.
OFPSpark Tag Information

OFPSpark is a red (orange) fluorescent protein (excitation/emission maxima are 549 and 566 nm, respectively) derived from DsRed. Possessing high photostability and pH stability, OFPSpark is more than twice brighter than mOrange2. Fast OFPSpark maturation makes it clearly detectable in mammalian cells as early as within 8 hrs after transfection. OFPSpark can be expressed and detected in a wide range of organisms. Mammalian cells transiently transfected with OFPSpark expression vectors produce bright fluorescence in 8 hrs after transfection. No cytotoxic effects or visible protein aggregation are observed. For its monomer structure, OFPSpark performs well in some fusions and protein labeling applications.

Screening
Antibiotic in E.coli
Kanamycin
Antibiotic in Mammalian cell
Hygromycin
Application
Stable or Transient mammalian expression
Storage & Shipping
Shipping
Each tube contains lyophilized plasmid.
Storage
The lyophilized plasmid can be stored at ambient temperature for three months.
Background Information
IDO2 belongs to the indoleamine 2,3-dioxygenase family. Indoleamine 2,3-dioxgyenase (IDO), is a cytosolic haem protein which, together with the hepatic enzyme tryptophan 2,3-dioxygenase, catalyzes the conversion of tryptophan and other indole derivatives to kynurenines. In addition to classic IDO (IDO1), a new variant, IDO2, has recently been described. IDO2 is expressed in liver, small intestine, spleen, placenta, thymus, lung, brain, kidney, and colon. IDO is widely distributed in human tissues, its physiological role is not fully understood but is of great interest. IDO can be up-regulated via cytokines such as interferon-gamma, and can thereby modulate the levels of tryptophan, which is vital for cell growth. In humans and mice, the IDO1 and IDO2 genes are present tandemly in a tail-to-head arrangment on chromosome 8. In lower vertebrates such as zebrafish and toads only a single IDO gene may be present that may be more IDO2-like in structure. This closer relationship to IDO2 suggests that IDO2 may actually be the ancestor of the better characterized IDO1 gene, and that IDO1 might have been generated by gene duplication of IDO2 before the origin of tetrapods in mammalian evolutionary history. IDO2 catalyzes the first and rate-limiting step in the kynurenine pathway of tryptophan catabolism.
References
  • Witkiewicz AK, et al. (2009) Genotyping and expression analysis of IDO2 in human pancreatic cancer: a novel, active target. J Am Coll Surg. 208 (5): 781-7.
  • Sorensen RB, et al. (2011) Spontaneous cytotoxic T-Cell reactivity against indoleamine 2,3-dioxygenase-2. Cancer Res. 71 (6): 2038-44.
  • Witkiewicz AK, et al. (2009) Genotyping and expression analysis of IDO2 in human pancreatic cancer: a novel, active target. J Am Coll Surg. 208 (5): 781-7.
  • TOP