Human Coagulation Factor XI/F11 Gene ORF cDNA clone expression plasmid,C terminal GFP tag

Catalog Number:HGB724-CG

Gene
Species
Human
NCBI Ref Seq
RefSeq ORF Size
1878bp
Gene Synonym
FXI, MGC141891
Sequence Description
Identical with the Gene Bank Ref. ID sequence.
Description
Full length Clone DNA of Human coagulation factor XI Gene ORF cDNA clone expression plasmid,C terminal GFP tag
Plasmid
Promoter
Enhanced CMV mammalian cell promoter
Vector
pCMV3-C-GFPSpark
Restriction Site
Protein Tag
GFPSpark
Tag Sequence
GTGAGCAAGGGC……GAGCTGTACAAG
Sequencing Primers
Forward:T7(TAATACGACTCACTATAGGG) Reverse:BGH(TAGAAGGCACAGTCGAGG)
Quality Control
The plasmid is confirmed by full-length sequencing.
GFPSpark Tag Information
GFPSpark is an improved variant of the green fluorescent protein GFP. It possesses bright green fluorescence (excitation/ emission max = 487 / 508 nm) that is visible earlier than fluorescence of other green fluorescent proteins. GFPSpark is mainly intended for applications where fast appearance of bright fluorescence is crucial. It is specially recommended for cell and organelle labeling and tracking the promoter activity.
Screening
Antibiotic in E.coli
Kanamycin
Antibiotic in Mammalian cell
Hygromycin
Application
Stable or Transient mammalian expression
Storage & Shipping
Shipping
Each tube contains lyophilized plasmid.
Storage
The lyophilized plasmid can be stored at ambient temperature for three months.
Background Information
Factor XI (plasma thromboplastin antecedent) is a plasma glycoprotein, and a zymogen acting as a serine protease which participates in blood coagulation as a catalyst in the conversion of factor IX to factor IXa in the presence of calcium ions. It is an unusual dimeric protease, with structural features that distinguish it from vitamin K-dependent coagulation proteases. The factor XI is synthesized in the liver as a single polypeptide chain with a molecular weight estimated between 125 ~160 kDa and then is processed into a disulfide-bond linked homodimer. FXI is a homodimer, with each subunit containing four apple domains and a protease domain. The apple domains form a disk structure with binding sites for platelets, high molecular weight kininogen, and the substrate factor IX (FIX). FXI is converted to the active protease FXIa by cleavage of the Arg369-Ile370 bond on each subunit. After the activation reaction, Factor XIa is composed of two heavy and two light chains held together by three disulfide bonds. The heavy chains are derived from the amino termini of the zymogen and responsible for the binding of factor XI to high molecular weight kininogen and for the activation of factor IX, while the light chain contains the catalytic portion of the enzyme and is homologous to the trypsin family of serine proteases. FXI deficiency is a disorder characterized by a mild or no bleeding tendency. Severe FXI deficiency is an injury-related bleeding disorder common in Ashkenazi Jews and rare worldwide.
References
  • Gailani D, et al. (2009) Structural and functional features of factor XI. J Thromb Haemost. 7 Suppl 1: 75-8.
  • Duga S, et al. (2009) Factor XI Deficiency. Semin Thromb Hemost. 35(4): 416-25.
  • Emsley J, et al. (2010) Structure and function of factor XI. Blood. 115(13): 2569-77.
  • TOP