Human BLVRB Gene ORF cDNA clone expression plasmid,N terminal HA tag

Catalog Number:HGA826-NY

Gene
Species
Human
NCBI Ref Seq
RefSeq ORF Size
621bp
Gene Synonym
FLR, BVRB, SDR43U1, MGC117413, BLVRB
Sequence Description
Identical with the Gene Bank Ref. ID sequence.
Description
Full length Clone DNA of Human biliverdin reductase B (flavin reductase (NADPH)) Gene ORF cDNA clone expression plasmid,N terminal HA tag
Plasmid
Promoter
Enhanced CMV mammalian cell promoter
Vector
pCMV3-N-HA
Restriction Site
Protein Tag
HA
Tag Sequence
TATCCTTACGACGTGCCTGACTACGCC
Sequencing Primers
Forward:T7(TAATACGACTCACTATAGGG) Reverse:BGH(TAGAAGGCACAGTCGAGG)
Quality Control
The plasmid is confirmed by full-length sequencing.
HA Tag Information

Human influenza hemagglutinin (HA) is a surface glycoprotein required for the infectivity of the human virus. The HA tag is derived from the HA-molecule corresponding to amino acids 98-106 has been extensively used as a general epitope tag in expression vectors. Many recombinant proteins have been engineered to express the HA tag, which does not appear to interfere with the bioactivity or the biodistribution of the recombinant protein. This tag facilitates the detection, isolation, and purification of the proteins.

The actual HA tag is as follows: 5' TAC CCA TAC GAT GTT CCA GAT TAC GCT 3' or 5' TAT CCA TAT GAT GTT CCA GAT TAT GCT 3' The amino acid sequence is: YPYDVPDYA.

Screening
Antibiotic in E.coli
Kanamycin
Antibiotic in Mammalian cell
Hygromycin
Application
Stable or Transient mammalian expression
Storage & Shipping
Shipping
Each tube contains lyophilized plasmid.
Storage
The lyophilized plasmid can be stored at ambient temperature for three months.
Background Information
Biliverdin reductase (hBVR) is a serine/threonine kinase that catalyzes reduction of the heme oxygenase (HO) activity product, biliverdin, to bilirubin. BVR consists of an N-terminal dinucleotide-binding domain (Rossmann-fold) and a C-terminal domain that contains a six-stranded β-sheet that is flanked on one face by several α-helices. The C-terminal and N-terminal domains interact extensively, forming the active site cleft at their interface. Biliverdin reductase (BVR) catalyzes the last step in heme degradation by reducing the γ-methene bridge of the open tetrapyrrole, biliverdin IXα, to bilirubin with the concomitant oxidation of a β-nicotinamide adenine dinucleotide (NADH) or β-nicotinamide adenine dinucleotide phosphate (NADPH) cofactor. It is now recognized that human BVR (hBVR) is a dual-specificity kinase (Ser / Thr and Tyr) upstream activator of the insulin/insulin growth factor-1 (IGF-1) and mitogen-activated protein kinase (MAPK) signaling pathways. Human BVR (hBVR) is essential for MAPK-extracellular signal-regulated kinase (ERK)1/2 (MEK)-eukaryotic-like protein kinase (Elk) signaling and has been identified as the cytoplasm-nuclear heme transporter of ERK1/2 and hematin, the key components of stress-responsive gene expression.
References
  • Kapitulnik J, et al. (2009) Pleiotropic functions of biliverdin reductase: cellular signaling and generation of cytoprotective and cytotoxic bilirubin. Trends in Pharmacological Sciences. 30(3): 129-37.
  • Ahmad Z, et al. (2002) Human Biliverdin Reductase Is a Leucine Zipper-like DNA-binding Protein and Functions in Transcriptional Activation of Heme Oxygenase-1 by Oxidative Stress. The Journal of Biological Chemistry. 277: 9226-32.
  • Whitby FG, et al. (2002) Crystal Structure of a Biliverdin IX Reductase Enzyme-Cofactor Complex. Journal of Molecular Biology. 319(5): 1199-210.
  • TOP