Human ALK-2/ACVR1 transcript variant 2 Gene ORF cDNA clone expression plasmid,N terminal His tag

Catalog Number:HGA344-NH

Gene
Species
Human
NCBI Ref Seq
RefSeq ORF Size
1530bp
Gene Synonym
ACVR1, FOPA, ALK2, SKR1, TSRI, ACTRI, ACVR1A, ACVRLK2
Sequence Description
Identical with the Gene Bank Ref. ID sequence.
Description
Full length Clone DNA of Human activin A receptor, type I (ACVR1), transcript variant 2 Gene ORF cDNA clone expression plasmid,N terminal His tag
Plasmid
Promoter
Enhanced CMV mammalian cell promoter
Vector
pCMV3-N-His
Restriction Site
Protein Tag
His
Tag Sequence
CACCATCACCACCATCATCACCACCATCAC
Sequencing Primers
Forward:T7(TAATACGACTCACTATAGGG) Reverse:BGH(TAGAAGGCACAGTCGAGG)
Quality Control
The plasmid is confirmed by full-length sequencing.
His Tag Information

A polyhistidine-tag is an amino acid motif in proteins that consists of at least five histidine (His) residues, often at the N- or C-terminus of the protein.

Polyhistidine-tags are often used for affinity purification of polyhistidine-tagged recombinant proteins expressed in Escherichia coli and other prokarfyotic expression systems.

Screening
Antibiotic in E.coli
Kanamycin
Antibiotic in Mammalian cell
Hygromycin
Application
Stable or Transient mammalian expression
Storage & Shipping
Shipping
Each tube contains lyophilized plasmid.
Storage
The lyophilized plasmid can be stored at ambient temperature for three months.
Background Information
ALK-2, also termed as ACVR1, was initially identified as an activin type I receptor because of its ability to bind activin in concert with ActRII or ActRIIB. ALK-2 is also identified as a BMP type I receptor. It has been demonstrated that ALK-2 forms complex with either the BMP-2/7-bound BMPR-II or ACVR2A /ACVR2B. ALK-1 and ALK-2 presenting in the yeast Saccharomyces cerevisiae are two haspin homologues. Both ALK-1 and ALK-2 exhibit a weak auto-kinase activity in vitro, and are phosphoproteins in vivo. ALK-1 and ALK-2 levels peak in mitosis and late-S/G2. Control of protein stability plays a major role in ALK-2 regulation. The half-life of ALK-2 is particularly short in G1. Overexpression of ALK-2, but not of ALK-1, causes a mitotic arrest, which is correlated to the kinase activity of the protein. This suggests a role for ALK-2 in the control of mitosis. Endoglin is phosphorylated on cytosolic domain threonine residues by the TGF-beta type I receptors ALK-2 and ALK-5 in prostate cancer cells. Endoglin did not inhibit cell migration in the presence of constitutively active ALK-2. Defects in ALK-2 are a cause of fibrodysplasia ossificans progressiva (FOP).
References
  • Armes NA,et al. (1997) The ALK-2 and ALK-4 activin receptors transduce distinct mesoderm-inducing signals during early Xenopus development but do not co-operate to establish thresholds. Development 124(19): 3797-804.
  • Armes NA, et al. (1999) A short loop on the ALK-2 and ALK-4 activin receptors regulates signaling specificity but cannot account for all their effects on early Xenopus development. J Biol Chem. 274(12):7929-35.
  • Kawai S, et al. (2000) Mouse smad8 phosphorylation downstream of BMP receptors ALK-2, ALK-3, and ALK-6 induces its association with Smad4 and transcriptional activity.Biochem Biophys Res Commun. 271(3):682-7.
  • Deng Y, et al. (2009) Efficient highly selective synthesis of methyl 2-(ethynyl)alk-2(E)-enoates and 2-(1'-chlorovinyl)alk-2(Z)-enoates from 2-(methoxycarbonyl)-2,3-allenols. Organic letters 11(10):2169-72.
  • TOP