Rhesus BMPR2 Gene ORF cDNA clone expression plasmid,C terminal OFP tag

Catalog Number:CGA841-CO

Gene
Species
Rhesus
NCBI Ref Seq
RefSeq ORF Size
3117bp
Gene Synonym
BMPR2
Sequence Description
Identical with the Gene Bank Ref. ID sequence.
Description
Full length Clone DNA of Rhesus bone morphogenetic protein receptor, type II (serine/threonine kinase) Gene ORF cDNA clone expression plasmid,C terminal OFP tag
Plasmid
Promoter
Enhanced CMV mammalian cell promoter
Vector
pCMV3-C-OFPSpark
Restriction Site
Protein Tag
OFPSpark
Tag Sequence
GATAGCACTGAG……CACCTGTTCCAG
Sequencing Primers
Forward:T7(TAATACGACTCACTATAGGG) Reverse:BGH(TAGAAGGCACAGTCGAGG)
Quality Control
The plasmid is confirmed by full-length sequencing.
OFPSpark Tag Information

OFPSpark is a red (orange) fluorescent protein (excitation/emission maxima are 549 and 566 nm, respectively) derived from DsRed. Possessing high photostability and pH stability, OFPSpark is more than twice brighter than mOrange2. Fast OFPSpark maturation makes it clearly detectable in mammalian cells as early as within 8 hrs after transfection. OFPSpark can be expressed and detected in a wide range of organisms. Mammalian cells transiently transfected with OFPSpark expression vectors produce bright fluorescence in 8 hrs after transfection. No cytotoxic effects or visible protein aggregation are observed. For its monomer structure, OFPSpark performs well in some fusions and protein labeling applications.

Screening
Antibiotic in E.coli
Kanamycin
Antibiotic in Mammalian cell
Hygromycin
Application
Stable or Transient mammalian expression
Storage & Shipping
Shipping
Each tube contains lyophilized plasmid.
Storage
The lyophilized plasmid can be stored at ambient temperature for three months.
Background Information
The bone morphogenetic protein type II receptor (BMPR-II, or BMPR2), a receptor for the transforming growth factor (TGF)-beta/bone morphogenetic protein (BMP) superfamily. Reduced expression or function of BMPR2 signaling leads to exaggerated TGF-beta signaling and altered cellular responses to TGF-beta. In endothelial cells, BMPR2 mutation increases the susceptibility of cells to apoptosis. BMPR2 transduces BMP signals by forming heteromeric complexes with and phosphorylating BMP type I receptors. The intracellular domain of BMPR2 is both necessary and sufficient for receptor complex interaction. It had been identified that BMPR2 plays a key role in cell growth. Its mutations lead to hereditary pulmonary hypertension, and knockout of Bmpr-II results in early embryonic lethality. The C-terminal tail of BMPR2 provides binding sites for a number of regulatory proteins that may initiate Smad-independent signalling. BMPR2 mutations were predicted to alter the BMP and TGF-b1/SMAD signalling pathways, resulting in proliferation rather than apoptosis of vascular cells, and greatly increase the risk of developing severe pulmonary arterial hypertension. BMPR2 gene result in familial Primary pulmonary hypertension (PPH) transmitted as an autosomal dominant trait, albeit with low penetrance. Heterozygous germline mutations of BMPR2 gene have been identified in patients with familial and sporadic PPH, indicating that BMPR2 may contribute to the maintenance of normal pulmonary vascular structure and function. Tctex-1, a light chain of the motor complex dynein, interacts with the cytoplasmic domain of BMPR2 and demonstrate that Tctex-1 is phosphorylated by BMPR-II, a function disrupted by PPH disease causing mutations within exon 12. BMPR2 and Tctex-1 co-localize to endothelium and smooth muscle within the media of pulmonary arterioles, key sites of vascular remodelling in PPH.
References
  • Machado RD, et al. (2003) Functional interaction between BMPR-II and Tctex-1, a light chain of Dynein, is isoform-specific and disrupted by mutations underlying primary pulmonary hypertension. Hum Mol Genet. 12(24): 3277-86.
  • Abramowicz MJ, et al. (2003) Primary pulmonary hypertension after amfepramone (diethylpropion) with BMPR2 mutation. Eur Respir J. 22(3): 560-2.
  • Hassel S, et al. (2004) Proteins associated with type II bone morphogenetic protein receptor (BMPR-II) and identified by two-dimensional gel electrophoresis and mass spectrometry. Proteomics. 4(5): 1346-58.
  • Beppu H, et al. (2005) Generation of a floxed allele of the mouse BMP type II receptor gene. Genesis. 41(3): 133-7.
  • Morrell NW. (2006) Pulmonary hypertension due to BMPR2 mutation: a new paradigm for tissue remodeling? Proc Am Thorac Soc. 3(8): 680-6.
  • Nasim MT, et al. (2008) Stoichiometric imbalance in the receptor complex contributes to dysfunctional BMPR-II mediated signalling in pulmonary arterial hypertension. Hum Mol Genet. 217(11): 1683-94.
  • TOP