Rat c-Met/Met/HGFR Gene ORF cDNA clone expression plasmid,C terminal His tag

Catalog Number:RGA909-CH

Gene
Species
Rat
NCBI Ref Seq
RefSeq ORF Size
4149bp
Gene Synonym
HGFR, AUTS9, RCCP2, c-Met, MET
Sequence Description
Identical with the Gene Bank Ref. ID sequence.
Description
Full length Clone DNA of Rat met proto-oncogene (hepatocyte growth factor receptor) Gene ORF cDNA clone expression plasmid,C terminal His tag
Plasmid
Promoter
Enhanced CMV mammalian cell promoter
Vector
pCMV3-C-His
Restriction Site
Protein Tag
His
Tag Sequence
CACCATCACCACCATCATCACCACCATCAC
Sequencing Primers
Forward:T7(TAATACGACTCACTATAGGG) Reverse:BGH(TAGAAGGCACAGTCGAGG)
Quality Control
The plasmid is confirmed by full-length sequencing.
His Tag Information

A polyhistidine-tag is an amino acid motif in proteins that consists of at least five histidine (His) residues, often at the N- or C-terminus of the protein.

Polyhistidine-tags are often used for affinity purification of polyhistidine-tagged recombinant proteins expressed in Escherichia coli and other prokarfyotic expression systems.

Screening
Antibiotic in E.coli
Kanamycin
Antibiotic in Mammalian cell
Hygromycin
Application
Stable or Transient mammalian expression
Storage & Shipping
Shipping
Each tube contains lyophilized plasmid.
Storage
The lyophilized plasmid can be stored at ambient temperature for three months.
Background Information
Hepatocyte growth factor receptor (HGFR), also known as c-Met or mesenchymal-epithelial transition factor (MET), is a receptor tyrosine kinase (RTK) that has been shown to be overexpressed and/or mutated in a variety of malignancies. HGFR protein is produced as a single-chain precursor, and HGF is the only known ligand. Normal HGF/HGFR signaling is essential for embryonic development, tissue repair or wound healing, whereas aberrantly active HGFR has been strongly implicated in tumorigenesis, particularly in the development of invasive and metastatic phenotypes. HGFR protein is a multifaceted regulator of growth, motility, and invasion, and is normally expressed by cells of epithelial origin. Preclinical studies suggest that targeting aberrant HGFR signaling could be an attractive therapy in cancer.
References
  • McGill GG, et al. (2006) c-Met expression is regulated by Mitf in the melanocyte lineage. J Biol Chem. 281(15): 10365-73.
  • Garcia S, et al. (2007) c-Met overexpression in inflammatory breast carcinomas: automated quantification on tissue microarrays. British journal of cancer. 96(2): 329-35.
  • Socoteanu MP, et al. (2008) c-Met targeted therapy of cholangiocarcinoma. World J Gastroenterol. 14(19): 2990-4.
  • Kong DS, et al. (2009) Prognostic significance of c-Met expression in glioblastomas. Cancer. 115(1): 140-8.
  • TOP