Human 4E-BP1/EIF4EBP1 Gene ORF cDNA clone expression plasmid,N terminal HA tag

Catalog Number:HGA049-NY

Gene
Species
Human
NCBI Ref Seq
RefSeq ORF Size
357bp
Gene Synonym
EIF4EBP1, BP-1, 4EBP1, PHAS-I
Sequence Description
Identical with the Gene Bank Ref. ID sequence.
Description
Full length Clone DNA of Human eukaryotic translation initiation factor 4E binding protein 1 Gene ORF cDNA clone expression plasmid,N terminal HA tag
Plasmid
Promoter
Enhanced CMV mammalian cell promoter
Vector
pCMV3-N-HA
Restriction Site
Protein Tag
HA
Tag Sequence
TATCCTTACGACGTGCCTGACTACGCC
Sequencing Primers
Forward:T7(TAATACGACTCACTATAGGG) Reverse:BGH(TAGAAGGCACAGTCGAGG)
Quality Control
The plasmid is confirmed by full-length sequencing.
HA Tag Information

Human influenza hemagglutinin (HA) is a surface glycoprotein required for the infectivity of the human virus. The HA tag is derived from the HA-molecule corresponding to amino acids 98-106 has been extensively used as a general epitope tag in expression vectors. Many recombinant proteins have been engineered to express the HA tag, which does not appear to interfere with the bioactivity or the biodistribution of the recombinant protein. This tag facilitates the detection, isolation, and purification of the proteins.

The actual HA tag is as follows: 5' TAC CCA TAC GAT GTT CCA GAT TAC GCT 3' or 5' TAT CCA TAT GAT GTT CCA GAT TAT GCT 3' The amino acid sequence is: YPYDVPDYA.

Screening
Antibiotic in E.coli
Kanamycin
Antibiotic in Mammalian cell
Hygromycin
Application
Stable or Transient mammalian expression
Storage & Shipping
Shipping
Each tube contains lyophilized plasmid.
Storage
The lyophilized plasmid can be stored at ambient temperature for three months.
Background Information
The translational suppressor eIF4E binding protein-1, 4E-BP1 functions as a key regulator in cellular growth, differentiation, apoptosis and survival. The Eif4ebp1 gene, encoding 4E-BP1, is a direct target of a transcription factor activating transcription factor-4 (ATF4), a master regulator of gene expression in stress responses. 4E-BP1 is characterized by its capacity to bind specifically to eIF4E and inhibit its interaction with eIF4G. Phosphorylation of 4E-BP1 regulates eIF4E availability, and therefore, cap-dependent translation, in cell stress. Binding of eIF4E to eIF4G is inhibited in a competitive manner by 4E-BP1. Phosphorylation of 4E-BP1 decreases the affinity of this protein for eIF4E, thus favouring the binding of eIF4G and enhancing translation. 4E-BP1 is important for beta-cell survival under endoplasmic reticulum (ER) stress. 4E-BP1 mediates the regulation of protein translation by hormones, growth factors and other stimuli that signal through the MAP kinase and mTORC1 pathways. Recently, 4E-BP1 was found to be a key factor, which converges several oncogenic signals, phosphorylates the molecules, and drives the downstream proliferative signals. Recent studies showed that high expression of phosphorylated 4E-BP-1 (p-4E-BP1) is associated with poor prognosis, tumor progression, or nodal metastasis in different human cancers.
References
  • Azar R, et al. (2008) Phosphatidylinositol 3-kinase-dependent transcriptional silencing of the translational repressor 4E-BP1. Cell Mol Life Sci. 65(19): 3110-7.
  • Tominaga R, et al. (2010) The JNK pathway modulates expression and phosphorylation of 4E-BP1 in MIN6 pancreatic beta-cells under oxidative stress conditions. Cell Biochem Funct. 28(5): 387-93.
  • Ayuso MI, et al. (2010) New hierarchical phosphorylation pathway of the translational repressor eIF4E-binding protein 1 (4E-BP1) in ischemia-reperfusion stress. J Biol Chem. 285(45): 34355-63.
  • TOP