Human ACVR2B/Activin RIIB Gene ORF cDNA clone expression plasmid,N terminal Myc tag

Catalog Number:CGA179-NM

Gene
Species
Human
NCBI Ref Seq
RefSeq ORF Size
1539bp
Gene Synonym
ACTRIIB, ActR-IIB, MGC116908
Sequence Description
Identical with the Gene Bank Ref. ID sequence.
Description
Full length Clone DNA of Human activin A receptor, type I IB Gene ORF cDNA clone expression plasmid,N terminal Myc tag
Plasmid
Promoter
Enhanced CMV mammalian cell promoter
Vector
pCMV3-N-Myc
Restriction Site
Protein Tag
Myc
Tag Sequence
GAGCAGAAACTCATCTCAGAAGAGGATCTG
Sequencing Primers
Forward:T7(TAATACGACTCACTATAGGG) Reverse:BGH(TAGAAGGCACAGTCGAGG)
Quality Control
The plasmid is confirmed by full-length sequencing.
Myc Tag Information

A myc tag is a polypeptide protein tag derived from the c-myc gene product that can be added to a protein using recombinant DNA technology. It can be used for affinity chromatography, then used to separate recombinant, overexpressed protein from wild type protein expressed by the host organism. It can also be used in the isolation of protein complexes with multiple subunits.

A myc tag can be used in many different assays that require recognition by an antibody. If there is no antibody against the studied protein, adding a myc-tag allows one to follow the protein with an antibody against the Myc epitope. Examples are cellular localization studies by immunofluorescence or detection by Western blotting.

The peptide sequence of the myc-tag is: N-EQKLISEEDL-C (1202 Da). It can be fused to the C-terminus and the N-terminus of a protein. It is advisable not to fuse the tag directly behind the signal peptide of a secretory protein, since it can interfere with translocation into the secretory pathway.

Screening
Antibiotic in E.coli
Kanamycin
Antibiotic in Mammalian cell
Hygromycin
Application
Stable or Transient mammalian expression
Storage & Shipping
Shipping
Each tube contains lyophilized plasmid.
Storage
The lyophilized plasmid can be stored at ambient temperature for three months.
Background Information
ACVR2A and ACVR2B are two activin type II receptors. ACVR2B is integral to the activin and myostatin signaling pathway. Ligands such as activin and myostatin bind to ACVR2A and ACVR2B. Myostatin, a negative regulator of skeletal muscle growth, is regarded as a potential therapeutic target and binds to ACVR2B effectively, and to a lesser extent, to ACVR2A. The structure of human ACVR2B kinase domain in complex with adenine establishes the conserved bilobal architecture consistent with all other catalytic kinase domains. Haplotype structure at the ACVR2B and follistatin loci may contribute to interindividual variation in skeletal muscle mass and strength. Defects in ACVR2B are a cause of left-right axis malformations.
References
  1. Kosaki R, et al. (1999) Left-right axis malformations associated with mutations in ACVR2B, the gene for human activin receptor type IIB. Am J Med Genet. 82(1):70-6.
  2. Dupont S, et al. (2001) No evidence for linkage or for diabetes-associated mutations in the activin type 2B receptor gene (ACVR2B) in French patients with mature-onset diabetes of the young or type 2 diabetes. Diabetes 50(5):1219-21.
  3. Albertson RC, et al. (2005) Zebrafish acvr2a and acvr2b exhibit distinct roles in craniofacial development. Developmental dynamics 233(4): 1405-18.
  4. Walsh S, et al. (2007) Activin-type II receptor B (ACVR2B) and follistatin haplotype associations with muscle mass and strength in humans. J Appl Physiol. 102(6):2142-8.
TOP